LDSO运行测试

直接法相比于特征点法,有两个非常不同的地方:
特征点法通过最小化重投影误差来计算相机位姿与地图点的位置,而直接法则最小化光度误差(photometric error)。所谓光度误差是说,最小化的目标函数,通常由图像之间的误差来决定,而非重投影之后的几何误差。直接法将数据关联(data association)与位姿估计(pose estimation)放在了一个统一的非线性优化问题中,而特征点法则分步求解,即,先通过匹配特征点求出数据之间关联,再根据关联来估计位姿。这两步通常是独立的,在第二步中,可以通过重投影误差来判断数据关联中的外点,也可以用于修正匹配结果(例如[4]中提到的类EM的方法)。

SVO属于半直接法仅在前端的Sparse model-based Image Alignment部分使用了直接法,之后的位姿估计、bundle adjustment,则仍旧使用传统的最小化重投影误差的方式。

DSO(Direct Sparse Odometry)
视觉里程计方法
DSO属于稀疏直接法的视觉里程计。它不是完整的SLAM,因为它不包含回环检测、地图复用的功能。
DSO是少数使用纯直接法(Fully direct)
https://vision.in.tum.de/research/vslam/dso
DSO之光度标定
https://www.cnblogs.com/luyb/p/6077478.html

LDSO
https://blog.csdn.net/qq_36122936/article/details/89016174

TUM数据集
https://vision.in.tum.de/data/

相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付 99.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值