Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd>

http://eigen.tuxfamily.org/dox-3.2/classEigen_1_1SelfAdjointEigenSolver.html

在数学里,作用于一个有限维的内积空间,一个自伴算子(self-adjoint operator)等于自己的伴随算子;等价地说,在一组单位酉正交基下,表达自伴算子的矩阵是埃尔米特矩阵。埃尔米特矩阵等于自己的共轭转置。根据有限维的谱定理,必定存在着一个正交归一基,可以表达自伴算子为一个实值的对角矩阵。

矩阵A的共轭转置(英语:conjugate transpose,又称埃尔米特共轭、埃尔米特转置(英语:Hermitian transpose))

内积空间是数学中的线性代数里的基本概念,是增添了一个额外的结构的向量空间。这个额外的结构叫做内积或标量积。内积将一对向量与一个标量连接起来,允许我们严格地谈论向量的“夹角”和“长度”,并进一步谈论向量的正交性。内积空间由欧几里得空间抽象而来(内积是点积的抽象),这是泛函分析讨论的课题。

内积空间有时也叫做准希尔伯特空间(pre-Hilbert space),因为由内积定义的距离完备化之后就会得到一个希尔伯特空间。

在早期的著作中,内积空间被称作酉空间,但这个词现在已经被淘汰了。在将内积空间称为酉空间的著作中,“内积空间”常指任意维(可数或不可数)的欧几里德空间。

数学上,特别是泛函分析中,希尔伯特空间中的每个线性算子有一个相应的伴随算子(adjoint operator)。算子的伴随将方块矩阵共轭转置推广到(可能)无穷维情形。如果我们将希尔伯特空间上的算子视为“广义复数”࿰

相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付 99.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值