「小秋SLAM笔记」

专注SLAM代码实践
私信 关注
小秋SLAM笔记
码龄7年
  • 605,443
    被访问量
  • 379
    原创文章
  • 3,292
    作者排名
  • 979
    粉丝数量
  • 于 2014-10-13 加入CSDN
获得成就
  • 博客专家认证
  • 获得469次点赞
  • 内容获得118次评论
  • 获得1,046次收藏
荣誉勋章
兴趣领域
  • #人工智能
TA的专栏
  • 深度学习|RCNN|SSD|YOLO
    付费
    65篇
  • ROS|二维导航
    付费
    38篇
  • Ubuntu|CLion|C/C++
    付费
    100篇
  • VO|十四讲|ORB_SLAM2
    付费
    155篇
  • VIO|ORB_SLAM3
    付费
    10篇
  「微信公众号小秋SLAM笔记」
watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzIxOTUwNjcx,size_16,color_FFFFFF,t_70#pic_center
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅
  • 小店

鱼眼相机模型及其标定

文章目录VINS-mono的鱼眼相机模型Unified Camera ModelVINS-mono的鱼眼相机模型Unified Camera Model
原创
16阅读
0评论
0点赞
发布博客于 3 天前

valgrind

https://www.valgrind.org/docs/download_docs.htmltar xvf valgrind-3.12.0.tar.bz2cd valgrind-3.12.0./configure --prefix=/usr/local/valgrindmakemake install
原创
10阅读
0评论
0点赞
发布博客于 10 天前

数据结构和算法|冒泡排序

#include <iostream>using namespace std;int main() { int array[3] = {5, 8, 6}; for (int i = 0; i < 3 - 1; i++) { cout << "i " << i << endl; for (int j = 0; j < 3 - i - 1; j++) { cout <
原创
26阅读
0评论
0点赞
发布博客于 16 天前

python3|matplotlib|折线图

import matplotlib.pyplot as pltimport numpy as npeu_path = "./mi.txt"kb_path = "./mi.txt"id_eucm = []z_eucm = []with open(eu_path, "r") as f: for line in f.readlines(): id_eucm.append(float(line.split( )[0])) z_eucm.append(floa
原创
19阅读
0评论
0点赞
发布博客于 17 天前

ORB_SLAM2|重投影误差

mvLevelSigma2; // 图像缩放倍数的平方// Check reprojection error in second keyframeconst float sigmaSquare2 = pKF2->mvLevelSigma2[kp2.octave];if((errX2*errX2+errY2*errY2)>5.991*sigmaSquare2)
原创
38阅读
0评论
0点赞
发布博客于 17 天前

opencv|stitching|图像拼接

#include <iostream>#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>#include <opencv2/stitching.hpp>#include "windows.h"using namespace std;using namespace cv.
原创
28阅读
0评论
0点赞
发布博客于 19 天前

opencv|norm

原创
10阅读
0评论
0点赞
发布博客于 19 天前

C++代码实践|Canny边缘检测

文章目录DATA.hMyCanny.hMyCanny.cppexample.cppDATA.h#ifndef DATA_#define DATA_#include <vector>#include<deque>#include"memory.h"using namespace std;typedef unsigned char PIXUC1;typedef float PIXFC1;//单通道 类型图像template<class PIXVA
原创
21阅读
0评论
0点赞
发布博客于 19 天前

Tried to advertise a service that is already advertised in this node

// I added a boolean to check if it is already initializedif (image_analyze == CMDTYPE_START){ // use boolean to avoid re-initializing subscriber. if (already_started_ == false){ already_started_ = true; camera_track_sub_ = it_.subscribeCamer
原创
25阅读
0评论
0点赞
发布博客于 20 天前

视觉SLAM十四讲|G2O(General Graphic Optimization)|使用详细汇总与雅克比矩阵推导

文章目录g2o源码结构图g2o的线性求解器g2o的块求解器g2o的solver求解器g2o的SparseOptimizer稀疏优化器第六讲g2o_curve_fitting初始化BlockSolver第七讲pose_estimation_3d2d初始化BlockSolver第七讲pose_estimation_3d3d初始化BlockSolverg2o源码中顶点(优化变量)的定义自定义顶点第六讲g2o_curve_fitting自定义顶点第七讲代码 pose_estimation_3d2d.cpp自定义顶点
原创
57阅读
0评论
1点赞
发布博客于 24 天前

视觉SLAM十四讲|第九讲代码实践|0.2两帧之间的视觉里程计

总结感觉这是个精简版的ORB_SLAM2,麻雀虽小,五脏俱全,主要还是前后两帧之间用3D-2D求解Rt,跑代码的时候请注意编译文件中我指定第三方库的路径,理解方面要关注主线忽略细节visual_odometry.cpp代码详细注释#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>#include <opencv2/calib3d/calib3d.hpp>#i.
原创
138阅读
0评论
0点赞
发布博客于 26 天前

opencv3|cv::ORB::create()

cv::Ptr<cv::FeatureDetector> detector = cv::ORB::create();detector->detect ( image_1,key_points_cv_orb_fast_1 );cv::Ptr<cv::DescriptorExtractor> descriptor = cv::ORB::create();descriptor->compute ( image_1, key_points_cv_orb_fast_1, d
原创
34阅读
0评论
0点赞
发布博客于 26 天前

opencv|遍历像素|待完成

问图中红点的坐标是? (2,1) 还是 (1,2)?答案是(2,1)!为什么? 看清了 我问的是坐标!!那么(2,1) 和 (1,2)究竟有什么不同?(2,1)表示的是红点的坐标,就是红点的 x 坐标是 2, y 坐标是 1。(1,2)表示的是红点的行和列,就是红点的行是1,列是2,也就是红点在第 1 行,第 2 列。这下子我相信大家都明白这两者的区别了吧srcImage.at(j, i)srcImage.at(Point(j, i))opencv灰度图at(i, j)显示不出来–乱码.
原创
14阅读
0评论
0点赞
发布博客于 29 天前

C++|STL|vector初始化以及和array的区别

今天看到mvuRight = vector<float>(N,-1);这段代码不理解于是开始百度把它干掉。先来说一下vector声明及初始化vector< int > a; //声明一个int型向量avector< int > a(10); //声明一个初始大小为10的向量vector< int > a(10, 1); //声明一个初始大小为10且初始值都为1的向量 vector< int > b(a);
原创
21阅读
0评论
0点赞
发布博客于 29 天前

C++|函数的参数加了const和&有什么作用?

一直被这个const和&所困扰,今天终于忍受不了了,于是开始各种百度。首先说一下 const修饰函数参数按值传递:传给形参的是实参的副本,即使形参在函数体内改变了,实参也不会受到影响。void fun(const int i){ i = 10; // 按值传递,报错: assignment of read-only parameter }void ComputeImageBounds(const cv::Mat &imLeft);再来说一下&不加引用的话,i
原创
43阅读
0评论
1点赞
发布博客于 1 月前

float grayscale = float ( gray.ptr<uchar> ( cvRound ( kp.pt.y ) ) [ cvRound ( kp.pt.x ) ] )

一直不理解像素怎么读取以及图形化是什么样子的,今天填坑了!#include <iostream>#include <fstream>#include <list>#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/opencv.hpp>using namespace cv;using name
原创
24阅读
0评论
0点赞
发布博客于 1 月前

No package ‘gstreamer-base-1.0‘ found

sudo apt-get install libgstreamer1.0-dev
原创
25阅读
0评论
0点赞
发布博客于 1 月前

pkg-config not finding gtk+-3.0

sudo apt-get install build-essential libgtk-3-dev
原创
16阅读
0评论
0点赞
发布博客于 1 月前

深度学习|过拟合

dropout取平均的作用: 先回到正常的模型(没有dropout),我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采用 “5个结果取均值”或者“多数取胜的投票策略”去决定最终结果。(例如 3个网络判断结果为数字9,那么很有可能真正的结果就是数字9,其它两个网络给出了错误结果)。这种“综合起来取平均”的策略通常可以有效防止过拟合问题。因为不同的网络可能产生不同的过拟合,取平均则有可能让一些“相反的”拟合互相抵消。dropout掉不同的隐藏神经元就类似在训练不同的网
原创
17阅读
0评论
0点赞
发布博客于 1 月前

深度学习|目标检测|RCNN|YOLO|SSD

RCNNRCNN算法分为4个步骤候选区域: Selective Search生成1K~2K个候选区域特征提取: CNN网络提取候选区域特征类别判断: SVM分类候选区域位置精修: 回归器修正候选区域框位置
原创
23阅读
1评论
0点赞
发布博客于 1 月前

opnecv3|角点检测|代码实践

cv::goodFeaturesToTrack() void cv::goodFeaturesToTrack( cv::InputArray image, // 输入图像(CV_8UC1 CV_32FC1) cv::OutputArray corners, // 输出角点vector int maxCorners, // 最大角点数目 double qualityLevel, // 质量水平系数(小于1.0的正数,一般在0.01-0.1之间) double minDistance, /
原创
17阅读
0评论
0点赞
发布博客于 1 月前

双目立体矫正|极线校正|

https://blog.csdn.net/wangxiaokun671903/category_2358341.htmlhttps://blog.csdn.net/rs_lys/article/details/83268491https://blog.csdn.net/u013000248/article/details/85325136等待补充代码
原创
26阅读
0评论
0点赞
发布博客于 1 月前

opencv3|多通道图像混合

#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>using namespace cv;using namespace std;bool MultiChannelBlending();int main(){ MultiChannelBlending(); return 0;}// 描述:多通道混合的实现函数bool MultiChannelBlending(){
原创
13阅读
0评论
0点赞
发布博客于 1 月前

opencv3|图片叠加

#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>using namespace cv;using namespace std;bool ROI_AddImage();bool LinearBlending();bool ROI_LinearBlending();int main(){ ROI_AddImage( ); LinearBlending( ); ROI
原创
23阅读
1评论
0点赞
发布博客于 1 月前

opencv3|指针访问像素

#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>using namespace std;using namespace cv;void colorReduce(Mat& inputImage, Mat& outputImage, int div);int main( ){ Mat srcImage = imread("../11.jpg"); ..
原创
22阅读
0评论
0点赞
发布博客于 1 月前

opencv3|绘制图形

//---------------------------------【头文件、命名空间包含部分】----------------------------// 描述:包含程序所使用的头文件和命名空间//------------------------------------------------------------------------------------------------#include <opencv2/core/core.hpp>#inclu..
原创
6阅读
0评论
0点赞
发布博客于 1 月前

opencv|Mat

//---------------------------------【头文件、命名空间包含部分】---------------------------// 描述:包含程序所使用的头文件和命名空间//-----------------------------------------------------------------------------------------------#include "opencv2/core/core.hpp"#include <io.
原创
8阅读
0评论
0点赞
发布博客于 1 月前

opencv3|鼠标实时绘制矩形

//---------------------------------【头文件、命名空间包含部分】-----------------------------// 描述:包含程序所使用的头文件和命名空间//-------------------------------------------------------------------------------------------------#include <opencv2/opencv.hpp>using namespace c
原创
7阅读
0评论
0点赞
发布博客于 1 月前

opencv3|两张图像叠加控件调整透明度

//---------------------------------【头文件、命名空间包含部分】-------------------------------// 描述:包含程序所使用的头文件和命名空间//-------------------------------------------------------------------------------------------------#include <opencv2/opencv.hpp>#include <o.
原创
5阅读
0评论
0点赞
发布博客于 1 月前

opencv3|图像混合

#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>using namespace cv;int main( ){ //-----------------------------------【二、初级图像混合】-------------------------------------- // 描述:二、初级图像混合 //---------------------.
原创
7阅读
0评论
0点赞
发布博客于 1 月前

opencv3|生成透明图像

#include <opencv2/opencv.hpp> //头文件#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>using namespace cv; //包含cv命名空间void createAlphaMat(Mat &mat){ for(int i = 0; i < mat.rows; ++i) { for..
原创
2阅读
0评论
0点赞
发布博客于 1 月前

opencv3|读取摄像头

#include <opencv2/opencv.hpp> //头文件#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>using namespace cv; //包含cv命名空间int main( ){ //【1】读入视频 VideoCapture capture("../1.avi"); //【2】循环显示每一帧 whil
原创
18阅读
0评论
0点赞
发布博客于 1 月前

opencv3|播放视频

#include <opencv2/opencv.hpp> //头文件#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>using namespace cv; //包含cv命名空间int main( ){ //【1】读入视频 VideoCapture capture("../1.avi"); //【2】循环显示每一帧 whil
原创
7阅读
0评论
0点赞
发布博客于 1 月前

opencv|Canny边缘检测

#include <opencv2/opencv.hpp> //头文件#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>using namespace cv; //包含cv命名空间int main( ){ // 【1】读入一张图片,载入图像 Mat srcImage = imread("../1.jpg"); // 【2】显示载入..
原创
16阅读
0评论
0点赞
发布博客于 1 月前

opnecv|模糊

#include <opencv2/opencv.hpp> //头文件#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>using namespace cv; //包含cv命名空间int main( ){ // 【1】读入一张图片,载入图像 Mat srcImage = imread("../1.jpg"); // 【2】显示载入..
原创
11阅读
0评论
0点赞
发布博客于 1 月前

opencv|腐蚀操作

#include <opencv2/opencv.hpp> //头文件#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>using namespace cv; //包含cv命名空间int main( ){ // 【1】读入一张图片,载入图像 Mat srcImage = imread("../1.jpg"); // 【2】显示载入的图.
原创
11阅读
0评论
0点赞
发布博客于 1 月前

april_and_checker_50x50cm_A0.pdf

april_and_checker_50x50cm_A0.pdf
pdf
发布资源于 1 月前

The matrix cookbook.pdf

The matrix cookbook.pdf
pdf
发布资源于 1 月前

CMake Practice.pdf

CMake Practice.pdf
pdf
发布资源于 1 月前

【合集】180415-Python 标准库及拓展_7幅导图.pdf

【合集】180415-Python 标准库及拓展_7幅导图.pdf
pdf
发布资源于 1 月前

Fast R-CNN.pdf

Fast R-CNN.pdf
pdf
发布资源于 1 月前

opencv配置(vs2013)和人脸检测.pdf

opencv配置(vs2013)和人脸检测.pdf
pdf
发布资源于 1 月前

Layered-Costmaps-for-Context-Sensitive-Navigation.pdf

Layered-Costmaps-for-Context-Sensitive-Navigation.pdf
pdf
发布资源于 1 月前

Introduction to visual SLAM.pdf

Introduction to visual SLAM.pdf
pdf
发布资源于 1 月前

Pose Graphs for Laser-Based SLAM

Pose Graphs for Laser-Based SLAM
pdf
发布资源于 1 月前

ORB_SLAM2|ORBextractor::DistributeOctTree|特征点均匀化

原创
65阅读
0评论
0点赞
发布博客于 1 月前

ORB_SLAM2|void ORBextractor::ComputeKeyPointsOctTree(vector<vector<KeyPoint> >& allKeypoints)

源码详解解读allKeypoints.resize(nlevels)
原创
29阅读
0评论
0点赞
发布博客于 1 月前

C++|std::size_t

std::size_t 可以存放下理论上可能存在的对象的最大大小,该对象可以是任何类型,包括数组。大小无法以 std::size_t 表示的类型是非良构的。 (C++14 起)在许多平台上(使用分段寻址的系统除外),std::size_t 可以存放下任何非成员的指针,此时可以视作其与 std::uintptr_t 同义。std::size_t 通常被用于数组索引和循环计数。使用其它类型来进行数组索引操作的程序可能会在某些情况下出错,例如在 64 位系统中使用 unsigned int 进行索引时,如果索引
原创
81阅读
0评论
0点赞
发布博客于 1 月前

C++|static静态成员变量用法详解

问题描述对象的内存中包含了成员变量,不同的对象占用不同的内存,这使得不同对象的成员变量相互独立,它们的值不受其他对象的影响。例如有两个相同类型的对象 a、b,它们都有一个成员变量 m_name,那么修改 a.m_name 的值不会影响 b.m_name 的值。可是有时候我们希望在多个对象之间共享数据,对象 a 改变了某份数据后对象 b 可以检测到,共享数据的典型使用场景是计数。解决方案在C++中,使用静态成员变量来实现多个对象共享数据的目标。静态成员变量是一种特殊的成员变量,它被关键字static修
原创
38阅读
0评论
0点赞
发布博客于 1 月前

C++|类的前置声明用法

C++ 前置声明问题两个类A、B相互调用,在两个类A和B的头文件中 #include 了所需的头文件,编译报错。为什么呢,A需要B,B需要A,形成了循环,违反了程序的确定性原则。原因在于:class BBB;这种方式仅仅是一种符号声明,告诉编译器存在BBB这个类,不会去确定BBB这个类的所占资源(内存)大小和这个类的实现。解决在AAA.h中定义的是BBB的指针变量或引用变量,而不是普通的BBB变量,这是因为定义指针变量或引用变量,编译器只需给该变量分配4字节(32位程序)内存,而不用管BBB对象
原创
32阅读
0评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|5-opencv|undistort_image.cpp

文章目录运行结果源码解读编译文件运行结果源码解读#include <opencv2/opencv.hpp>#include <string>using namespace std;int main() { /********************** * 读取相机内参数和畸变系数 *********************/ const string strSettingPath = "../undistort.a-yaml"; // 读取相机
原创
70阅读
1评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|5-opencv|orb_extract_feature.cpp

文章目录运行结果源码解读编译文件运行结果源码解读#include <iostream>#include <opencv2/core/core.hpp>#include <opencv2/features2d/features2d.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/opencv.hpp>int main (){ /************
原创
35阅读
1评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|5-opencv|g-extract_feature.cpp

文章目录运行结果源码解读编译文件运行结果源码解读#include <string>#include <nmmintrin.h>#include <chrono>#include <iostream>#include <opencv2/features2d/features2d.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/opencv.h
原创
37阅读
1评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|5-opencv|f-rename.cpp

文章目录运行结果源码解读编译文件运行结果源码解读#include <iostream>#include <fstream>#include <string>#include <iomanip>#include <dirent.h>#include <opencv2/opencv.hpp>#include <opencv2/core/core.hpp>#include <opencv2/highgu
原创
22阅读
1评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|5-opencv|e-opencv.cpp

文章目录运行结果源码解读编译文件运行结果源码解读#include <iostream>#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc.hpp>#include <opencv2/opencv.hpp>int main(int argc, char **argv) { cv::Mat
原创
23阅读
1评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|5-opencv|d-opencv.cpp

文章目录运行结果源码解读编译文件运行结果源码解读#include <iostream>#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc.hpp>#include <opencv2/opencv.hpp>int main(int argc, char **argv) { cv::Ma
原创
20阅读
1评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|5-opencv|c-opencv.cpp

文章目录运行结果源码解读编译文件运行结果源码解读#include <iostream>#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc.hpp>#include <opencv2/opencv.hpp>int main(int argc, char **argv) { cv::Mat
原创
19阅读
1评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|5-opencv|b-opencv.cpp

文章目录运行结果源码解读编译源码运行结果源码解读#include <iostream>#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc.hpp>#include <opencv2/opencv.hpp>int main() { cv::Mat image;// 读取一张二维三通道图
原创
20阅读
1评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|5-opencv|a_opencv.cpp

文章目录运行结果源码详解编译文件运行结果源码详解#include <iostream>#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc.hpp>#include <opencv2/opencv.hpp>int main(int argc, char **argv) { // 本教程通过
原创
28阅读
1评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|4-yaml|yaml.cpp

文章目录源码解读编译源码源码解读#include <iostream>#include <string>#include <vector>#include <opencv2/opencv.hpp>#include <opencv2/core.hpp>#include <yaml-cpp/yaml.h>using namespace std;using namespace cv;int main() {
原创
21阅读
1评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|3-sophus|c-trajectory_transform.cpp

文章目录运行结果源码解读编译文件运行结果源码解读/********************************************************************** * 轨迹文件数据格式:timestamp tx ty tz qx qy qz qw * 自定义旋转矩阵和平移向量对轨迹进行变换得到一个新的轨迹 * 使用ICP算法(取平移作为三维空间点)估计两个轨迹之间的位姿然后将该位姿作用在新轨迹上面 * 验证ICP算法估计的旋转矩阵和平移向量是否准确(两条轨迹是
原创
31阅读
0评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|3-sophus|b-trajectoryError.cpp

文章目录源码解读编译文件CMakeLists.txtgroundtruth.txtestimated.txt源码解读#include <iostream>#include <unistd.h>#include <pangolin/pangolin.h>#include <sophus/se3.hpp>using namespace Sophus;using namespace std;// Twc 的平移部分构成了机器人的轨迹// ali
原创
382阅读
0评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|3-sophus|a-sophus.cpp

文章目录源码解读编译文件CMakeLists.txt源码解读#include <iostream>#include <cmath>#include <Eigen/Core>#include <Eigen/Geometry>#include "sophus/se3.hpp"using namespace std;int main() { /****************************************** *
原创
26阅读
0评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|2-eigen|d-plotTrajectory.cpp

文章目录源码解读编译文件源码解读#include <pangolin/pangolin.h>#include <Eigen/Core>#include <unistd.h>// 本例演示了如何画出一个预先存储的轨迹using namespace std;using namespace Eigen;// path to trajectory filestring trajectory_file = "../trajectory.txt";void
原创
36阅读
0评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|2-eigen|c-coordinateTransform.cpp

文章目录源码解读编译文件源码解读#include <iostream>#include <Eigen/Core>#include <Eigen/Geometry>int main() { // 构造位姿变换矩阵:这个变换矩阵可以把世界坐标系转到R1坐标系 Eigen::Quaterniond q1(0.35, 0.2, 0.3, 0.1); // 四元数表示的旋转矩阵 std::cout << "q1 = " <<
原创
24阅读
0评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|2-eigen|b-visualizeGeometry.cpp

文章目录源码解读编译文件源码解读#include <iostream>#include <iomanip>using namespace std;#include <Eigen/Core>#include <Eigen/Geometry>using namespace Eigen;#include <pangolin/pangolin.h>struct RotationMatrix { Matrix3d matr
原创
37阅读
0评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|2-eigen|a-eigenGeometry.cpp

文章目录编译文件源码解读编译文件cmake_minimum_required(VERSION 2.8)set(EIGEN3_INCLUDE_DIRS /usr/local/include/eigen3)include_directories(${EIGEN3_INCLUDE_DIRS})add_executable( eigenGeometry eigenGeometry.cpp )源码解读#include <iostream>#include <cmath>#i
原创
23阅读
0评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|1-Cmake

源代码是如何变成可执行程序的 ?(一)源代码是如何变成可执行程序的 ?(二)源代码是如何变成可执行程序的 ?(三)源代码是如何变成可执行程序的 ?(四)源代码是如何变成可执行程序的 ?(五)源代码是如何变成可执行程序的 ?(六)...
原创
52阅读
0评论
0点赞
发布博客于 1 月前

视觉SLAM十四讲从理论到实践|0-Ubuntu16.04

如何制作一个U盘用来安装Ubuntu16.04 系统Windows10 下安装 Ubuntu16.04 双系统教程这个Ubuntu系统使用教程让小白的你瞬间变为大神
原创
26阅读
0评论
0点赞
发布博客于 1 月前

20210228

原创
54阅读
0评论
2点赞
发布博客于 2 月前

视觉SLAM十四讲从理论到实践|第六讲|ceresCurveFitting.cpp

视觉SLAM十四讲从理论到实践|第六讲|ceresCurveFitting.cpp
原创
76阅读
0评论
1点赞
发布博客于 2 月前

ubuntu 启动会话失败

sudo apt-get install ubuntu-session
原创
174阅读
0评论
0点赞
发布博客于 2 月前

视觉SLAM十四讲从理论到实践|第六讲|gaussNewton.cpp

视觉SLAM十四讲从理论到实践|第六讲|gaussNewton.cpp
原创
40阅读
0评论
0点赞
发布博客于 2 月前

pycharm安装教程

pycharm安装教程选择对应版本pycharm(免费社区版)点击下一步选择安装路径(不建议安装默认路径) 点击Next勾选所选项,点击Next点击Install等待安装安装成功,点击Finish勾选,点击OK右上角关闭窗口下面就可以创建项目了...
原创
470阅读
0评论
1点赞
发布博客于 2 月前

icra16_slam_tutorial_tardos.pdf

小秋SLAM笔记
pdf
发布资源于 2 月前

icra16_slam_tutorial_stachniss.pdf

小秋SLAM笔记
pdf
发布资源于 2 月前

icra16_slam_tutorial_kaess.pdf

小秋SLAM笔记
pdf
发布资源于 2 月前

icra16_slam_tutorial_grisetti.pdf

小秋SLAM笔记
pdf
发布资源于 2 月前

icra16_slam_tutorial_burgard.pdf

小秋SLAM笔记
pdf
发布资源于 2 月前

hertzberg_thesis_talk_08.pdf

小秋SLAM笔记
pdf
发布资源于 2 月前

Hector_SLAM_USAR_Kohlbrecher_RRSS_Graz_2012.pdf

小秋SLAM笔记
pdf
发布资源于 2 月前

Hartley_R_Sturm_P.Triangulation 三角测量方法 .pdf

小秋SLAM笔记
pdf
发布资源于 2 月前

gx-The Basics about SLAM.pptx

小秋SLAM笔记
pptx
发布资源于 2 月前

group mapping-A Topological Approach to Map Merging for Multiple Robots.pdf

小秋SLAM笔记
pdf
发布资源于 2 月前

graph-based SLAM.pdf

小秋SLAM笔记
pdf
发布资源于 2 月前

Gaussian Process VO Guizlini_ICRA12_.pdf

小秋SLAM笔记
pdf
发布资源于 2 月前

Furgale_RepresentingRobotPose.pdf

Furgale_RepresentingRobotPose.pdf
pdf
发布资源于 2 月前

FLIRT - Interest regions for 2D range data.pdf

FLIRT - Interest regions for 2D range data.pdf
pdf
发布资源于 2 月前

几种矩阵分解算法: LU分解,Cholesky分解,QR分解,SVD分解,Jordan分解

文章目录1.LU分解2. LDLT分解法3. Cholesky分解4. QR分解5.SVD分解6. Jordan 分解矩阵分解是将矩阵拆解为数个矩阵的乘积,可分为三角分解、满秩分解、QR分解、Jordan分解和SVD(奇异值)分解、非负矩阵分解等,常见的有三种:1)三角分解(Triangular Factorization),2)QR 分解法 (QR Factorization),3)奇异值分解 (Singular Value Decomposition)。1.LU分解三角分解(LU分解):是矩阵分解
原创
131阅读
0评论
0点赞
发布博客于 2 月前

fisher1996.pdf

小秋SLAM笔记
pdf
发布资源于 2 月前

Feminine Side Purchase Order 1983 to Twinswin.com.pdf

小秋SLAM笔记
pdf
发布资源于 2 月前

Feature Detection for Vehicle Localization in Urban Environments Using a

小秋SLAM笔记
pdf
发布资源于 2 月前

Fast RGBD-ICP with bionic vision depth perception model.pdf

小秋SLAM笔记
pdf
发布资源于 2 月前

Fast Keypoint Features from Laser Scanner for .pdf

小秋SLAM笔记
pdf
发布资源于 2 月前

Extending obstacle avoidance methods through multiple parameter-space

小秋SLAM笔记
pdf
发布资源于 2 月前

Direct method.pptx

小秋SLAM笔记
pptx
发布资源于 2 月前

Development of laser rangefinder-based SLAM algorithm for mobile

小秋SLAM笔记
pdf
发布资源于 2 月前

depth filter.pdf

小秋SLAM笔记
pdf
发布资源于 2 月前

COP-SLAM.ppt

小秋SLAM笔记
ppt
发布资源于 2 月前

concha_etal_icra16.pdf

小秋SLAM笔记
pdf
发布资源于 2 月前